04, Мар, 2025
629880, Ямало-Ненецкий автономный округ, Пуровский район, п. Пуровск, ул. Новая, д. 9

Решить задачу 5 класс по математике виленкин: Задача 91 — Математика 5 класс решебник гдз

Русский язык 5 класс Ладыженская

СПИСОК НОМЕРОВ ЗАДАЧ:

       1  2  3  4  5  6  7  8  9 

 10  11  12  13  14  15  16  17  18  19 

 20  21  22  23  24  25  26  27  28  29 

 30  31  32  33  34  35  36  37  38  39 

 40  41  42  43  44  45  46  47  48  49 

 50  51  52  53  54  55  56  57  58  59 

 60  61  62  63  64  65  66  67  68  69 

 70  71  72  73  74  75  76  77  78  79 

 80  81  82  83  84  85  86  87  88  89 

 90  91  92  93  94  95  96  97  98  99 

100

 100  101  102  103  104  105  106  107  108  109 

 110  111  112  113  114  115  116  117  118  119 

 120  121  122  123  124  125  126  127  128  129 

 130  131  132  133  134  135  136  137  138  139 

 140  141  142  143  144  145  146  147  148  149 

 150  151  152  153  154  155  156  157  158  159 

 160  161  162  163  164  165  166  167  168  169 

 170  171  172  173  174  175  176  177  178  179 

 180  181  182  183  184  185  186  187  188  189 

 190  191  192  193  194  195  196  197  198  199 

200

 200  201  202  203  204  205  206  207  208  209 

 210  211  212  213  214  215  216  217  218  219 

 220  221  222  223  224  225  226  227  228  229 

 230  231  232  233  234  235  236  237  238  239 

 240  241  242  243  244  245  246  247  248  249 

 250  251  252  253  254  255  256  257  258  259 

 260  261  262  263  264  265  266  267  268  269 

 270  271  272  273  274  275  276  277  278  279 

 280  281  282  283  284  285  286  287  288  289 

 290  291  292  293  294  295  296  297  298  299 

300

 300  301  302  303  304  305  306  307  308  309 

 310  311  312  313  314  315  316  317  318  319 

 320  321  322  323  324  325  326  327  328  329 

 330  331  332  333  334  335  336  337  338  339 

 340  341  342  343  344  345  346  347  348  349 

 350  351  352  353  354  355  356  357  358  359 

 360  361  362  363  364  365  366  367  368  369 

 370  371  372  373  374  375  376  377  378  379 

 380  381  382  383  384  385  386  387  388  389 

 390  391  392  393  394  395  396  397  398  399 

400

 400  401  402  403  404  405  406  407  408  409 

 410  411  412  413  414  415  416  417  418  419 

 420  421  422  423  424  425  426  427  428  429 

 430  431  432  433  434  435  436  437  438  439 

 440  441  442  443  444  445  446  447  448  449 

 450  451  452  453  454  455  456  457  458  459 

 460  461  462  463  464  465  466  467  468  469 

 470  471  472  473  474  475  476  477  478  479 

 480  481  482  483  484  485  486  487  488  489 

 490  491  492  493  494  495  496  497  498  499 

500

 500  501  502  503  504  505  506  507  508  509 

 510  511  512  513  514  515  516  517  518  519 

 520  521  522  523  524  525  526  527  528  529 

 530  531  532  533  534  535  536  537  538  539 

 540  541  542  543  544  545  546  547  548  549 

 550  551  552  553  554  555  556  557  558  559 

 560  561  562  563  564  565  566  567  568  569 

 570  571  572  573  574  575  576  577  578  579 

 580  581  582  583  584  585  586  587  588  589 

 590  591  592  593  594  595  596  597  598  599 

600

 600  601  602  603  604  605  606  607  608  609 

 610  611  612  613  614  615  616  617  618  619 

 620  621  622  623  624  625  626  627  628  629 

 630  631  632  633  634  635  636  637  638  639 

 640  641  642  643  644  645  646  647  648  649 

 650  651  652  653  654  655  656  657  658  659 

 660  661  662  663  664  665  666  667  668  669 

 670  671  672  673  674  675  676  677  678  679 

 680  681  682  683  684  685  686  687  688  689 

 690  691  692  693  694  695  696  697  698  699 

700

 700  701  702  703  704  705  706  707  708  709 

 710  711  712  713  714  715  716  717  718  719 

 720  721  722  723  724  725  726  727  728  729 

 730  731  732 

Программирование для начинающих с нуля — Решебник

Задачи по программированию с решениями.

Абрамян М. Э.

Begin

Integer

Boolean

If

Case

For

While

Series

Proc

Minmax

Array

Matrix

String

File

Text

Param

Recur

Dynamic

Задачи по программированию. Абрамов С.А. и др.

3. Простейшая целочисленная арифметика

2. Разветвления

1.

Арифметика действительных чисел. Вычисления по формулам

Задачи по программированию для начинающих

3. Текстовый файл

2. Двумерный массив

1. Одномерный массив

  • Вы здесь:  
  • Главная
  • Глава 13. Задача 4
  • Глава 13. Задача 3
  • Глава 13. Задача 2
  • Глава 12. Задача 3
  • org/Article»> Глава 13. Задача 1
  • Глава 12. Задача 2
  • Глава 12. Задача 1. б
  • Глава 12. Задача 9
  • Глава 12. Задача 8
  • Глава 12. Задача 7

Популярные статьи

  • А.В. Погорелов. Геометрия. 7 класс. §1. Контрольные вопросы, ответы
  • А.В. Погорелов. Геометрия. 7 класс. §2. Контрольные вопросы, ответы
  • А.В. Погорелов. Геометрия. 7 класс. §3. Контрольные вопросы, ответы
  • org/Article»> Генеральная совокупность и выборка
  • А.В. Погорелов. Геометрия. 9 класс. §11. Контрольные вопросы, ответы
  • А.В. Погорелов. Геометрия. 8 класс. § 8. Контрольные вопросы, ответы
  • А.В. Погорелов. Геометрия. 8 класс. § 9. Контрольные вопросы, ответы
  • А.В. Погорелов. Геометрия. 7 класс. §5. Контрольные вопросы, ответы
  • Глава 3. Задача 7
  • А.В. Погорелов. Геометрия. 8 класс. §10. Контрольные вопросы, ответы
  • Глава 2. Задача 4
  • org/Article»> Глава 13. Задача 4

Полулярные теги

  • python 3
  • c++
  • begin
  • print
  • решение
  • random
  • int
  • double
  • include
  • cout
  • randrange
  • using
  • main
  • import
  • cin

Неформальные стратегии учащихся с расстройствами аутистического спектра при решении задач с декартовыми произведениями

%PDF-1.4 % 1 0 объект > эндообъект 9 0 объект /Заголовок /Предмет /Автор /Режиссер /Ключевые слова /CreationDate (D:20221024205718-00’00’) /Категория () /Комментарии () /Компания () /ContentTypeId (0x010100AE9B7701CED8684B9391F31BBC87C6B6) /Управляющий делами () /ModDate (D:20220322121904+01’00’) /Источник изменен () >> эндообъект 2 0 объект > эндообъект 3 0 объект > эндообъект 4 0 объект > эндообъект 5 0 объект > эндообъект 6 0 объект > ручей 2022-03-22T12:19:04+01:002022-03-22T12:18:58+01:002022-03-22T12:19:04+01:00Acrobat PDFMaker 20 для Worduuid:9ce84fc6-fd8e-4ea3-bef2-e73113994c1auuid:c4eee391-9a24-4a43 -a40e-275d8676cb1e

  • 3
  • application/pdf
  • Неформальные стратегии учащихся с расстройствами аутистического спектра при решении задач декартова произведения
  • Пользователь Microsoft Office
  • Библиотека Adobe PDF 20. 5.1060x010100AE9B7701CED8684B9391F31BBC87C6B6 конечный поток эндообъект 7 0 объект >
    эндообъект 8 0 объект > эндообъект 10 0 объект > эндообъект 11 0 объект > эндообъект 12 0 объект > эндообъект 13 0 объект > эндообъект 14 0 объект > эндообъект 15 0 объект > эндообъект 16 0 объект > эндообъект 17 0 объект > эндообъект 18 0 объект > /ProcSet [/PDF /Text /ImageC /ImageB /ImageI] >> эндообъект 19+vOqyNr:N\1WBnCj{rnph2؊e’l$z/ϗ__9Ռ2Lͥ\ɀU/EY\[ dnQƅ*TcMl -{uq:;L1kX#{\CAK3Upϋ(c 9rkoѸ[jZO藧%/ PcBGw2z2%ӡ ||9A;dY,

    Доводы в пользу параллельных вселенных

    Примечание редактора: В августовском номере Scientific American космолог Джордж Эллис описывает, почему он скептически относится к концепции параллельных вселенных.

    Здесь сторонники мультивселенной Александр Виленкин и Макс Тегмарк предлагают контраргументы, объясняя, почему мультивселенная объясняет так много особенностей нашей Вселенной и как ее можно проверить.

     

    Добро пожаловать в Мультивселенную
    Александр Виленкин

    Вселенная, какой мы ее знаем, возникла в результате великого взрыва, который мы называем Большим взрывом. Почти столетие космологи изучали последствия этого взрыва: как Вселенная расширялась и охлаждалась, и как галактики постепенно стягивались под действием гравитации. На природу самого взрыва обратили внимание сравнительно недавно. Это предмет теории инфляции, которая была разработана в начале 19 века.80-х годов Алана Гута, Андрея Линде и других, и привело к радикально новому глобальному взгляду на вселенную.

    Инфляция — это период сверхбыстрого, ускоренного расширения в ранней космической истории. Это так быстро, что за долю секунды крошечная субатомная частица пространства раздувается до размеров, намного превышающих всю наблюдаемую в настоящее время область.

    В конце инфляции энергия, вызвавшая расширение, воспламеняет горячий огненный шар из частиц и излучения. Это то, что мы называем большим взрывом.

    Конец инфляции спровоцирован квантовыми, вероятностными процессами и не происходит одновременно везде. В нашем космическом соседстве инфляция закончилась 13,7 миллиарда лет назад, но она все еще продолжается в отдаленных частях Вселенной, и постоянно формируются другие «нормальные» области, подобные нашей. Новые области появляются в виде крошечных микроскопических пузырьков и сразу же начинают расти. Пузыри продолжают расти без ограничений; тем временем инфляционное расширение раздвигает их, освобождая место для образования новых пузырей. Этот бесконечный процесс называется вечной инфляцией. Мы живем в одном из пузырей и можем наблюдать лишь небольшую его часть. Независимо от того, насколько быстро мы путешествуем, мы не можем догнать расширяющиеся границы нашего пузыря, поэтому для всех практических целей мы живем в замкнутой вселенной пузыря.

    Теория инфляции объяснила некоторые загадочные особенности Большого взрыва, которые раньше просто нужно было постулировать. Он также сделал ряд проверяемых предсказаний, которые затем были убедительно подтверждены наблюдениями. К настоящему времени инфляция стала ведущей космологической парадигмой.

    Другой ключевой аспект нового мировоззрения проистекает из теории струн, которая в настоящее время является нашим лучшим кандидатом на роль фундаментальной теории природы. Теория струн допускает огромное количество решений, описывающих пузырьковые вселенные с различными физическими свойствами. Величины, которые мы называем константами природы, такие как массы элементарных частиц, гравитационная постоянная Ньютона и т. д., принимают разные значения в разных типах пузырей. Теперь соедините это с теорией инфляции. Каждый тип пузырьков имеет определенную вероятность образования в надувном пространстве. Так неизбежно в ходе вечного надувания будет образовываться неограниченное количество пузырей всех возможных типов.

    Эта картина вселенной, или мультивселенная , как ее называют, объясняет давнюю загадку того, почему константы природы кажутся точно настроенными для возникновения жизни. Причина в том, что разумные наблюдатели существуют только в тех редких пузырях, в которых по чистой случайности константы оказываются как раз подходящими для развития жизни. Остальная часть мультивселенной остается бесплодной, но никто не может пожаловаться на это.

    Некоторые из моих коллег-физиков находят теорию мультивселенной тревожной. Любая теория в физике стоит или рушится в зависимости от того, согласуются ли ее предсказания с данными. Но как мы можем проверить существование других пузырьковых вселенных? Пол Стейнхардт и Джордж Эллис утверждали, например, что теория мультивселенной ненаучна, поскольку ее невозможно проверить даже в принципе.

    Удивительно, но наблюдательные проверки картины мультивселенной на самом деле могут быть возможны. Энтони Агирре, Мэтт Джонсон, Мэтт Клебан и другие указывали, что столкновение нашего расширяющегося пузыря с другим пузырем в мультивселенной оставило бы отпечаток в космическом фоновом излучении — круглое пятно с большей или меньшей интенсивностью излучения. Обнаружение такого пятна с предсказанным профилем интенсивности предоставило бы прямое свидетельство существования других вселенных-пузырей. Сейчас поиск продолжается, но, к сожалению, нет никакой гарантии, что столкновение пузырей произошло в пределах нашего космического горизонта.

    Есть и другой подход, которому можно следовать. Идея состоит в том, чтобы использовать нашу теоретическую модель мультивселенной для предсказания констант природы, которые мы можем ожидать измерить в нашем локальном регионе. Если константы варьируются от одной пузырьковой вселенной к другой, их локальные значения нельзя предсказать с уверенностью, но мы все же можем сделать статистических предсказаний. Мы можем вывести из теории, какие значения констант, скорее всего, будут измерены типичным наблюдателем в мультивселенной. Предполагая, что мы типичны — предположение, которое я назвал принцип посредственности — тогда мы можем предсказать вероятные значения констант в нашем пузыре.

    Эта стратегия была применена к плотности энергии вакуума, также известной как «темная энергия». Стивен Вайнберг заметил, что в регионах, где темная энергия велика, Вселенная очень быстро расширяется, не позволяя материи слипаться в галактики и звезды. Наблюдатели вряд ли будут развиваться в таких регионах. Расчеты показали, что большинство галактик (а значит, и большинство наблюдателей) находятся в областях, где темная энергия примерно равна плотности вещества в эпоху образования галактик. Таким образом, предсказание состоит в том, что подобное значение должно наблюдаться в нашей части Вселенной.

    По большей части физики не воспринимали эти идеи всерьез, но, к их большому удивлению, темная энергия примерно ожидаемой величины была обнаружена в ходе астрономических наблюдений в конце 1990-х годов. Это может быть нашим первым свидетельством того, что действительно существует огромная мультивселенная. Это изменило многие взгляды.

    Теория мультивселенной все еще находится в зачаточном состоянии, и некоторые концептуальные проблемы еще предстоит решить. Но, как писал Леонард Засскинд, «держу пари, что на рубеже 22-го века философы и физики с ностальгией посмотрят на настоящее и вспомнят золотой век, когда узкое провинциальное представление о Вселенной 20-го века уступило место более широкому и лучшему. [мультивселенная] … умопомрачительных размеров».

     

    Мультивселенная наносит ответный удар
    Макс Тегмарк

    Вы действительно живете в мультивселенной или это понятие выходит за рамки науки?

    Вдохновленный интересной критикой мультивселенных в августовском номере Scientific American, , написанной пионером теории теории относительности Джорджем Ф. Р. Эллисом, позвольте отдать вам свои пять копеек.

    Идеи мультивселенной традиционно подвергались расправе со стороны истеблишмента: Джордано Бруно с его мультивселенной бесконечного пространства сгорел на костре в 1600 году, а Хью Эверетт с его квантовой мультивселенной сгорел на рынке труда физика в 1957. Я даже испытал на себе некоторый жар, когда старшие коллеги предположили, что мои публикации, связанные с мультивселенной, были чушью и разрушили бы мою карьеру. Однако в последние годы произошли кардинальные изменения. Параллельные вселенные сейчас в моде, они появляются в книгах, фильмах и даже в шутках: «Вы сдали экзамен во многих параллельных вселенных, но не в этой».

    Это разглашение идей, конечно, не привело к консенсусу среди ученых, но оно сделало дебаты о мультивселенной гораздо более тонкими и, на мой взгляд, более интересными, когда ученые выходят за рамки выкрикивания звуковых фрагментов мимо друг друга и искренне пытаются понять противоположные точки зрения. Новая статья Джорджа Эллиса — отличный тому пример, и я очень рекомендую ее прочитать, если вы еще этого не сделали.

    Под нашей вселенной я подразумеваю сферическую область пространства, из которой свет успел достичь нас в течение 13,7 миллиардов лет, прошедших после нашего Большого взрыва. Говоря о параллельных вселенных, я считаю полезным различать четыре разных уровня: Уровень I (другие подобные регионы далеко в космосе, где кажущиеся законы физики одинаковы, но где история развивалась по-другому, потому что все начиналось по-другому), Уровень II (области пространства, где даже кажущиеся законы физики различны), Уровень III (параллельные миры где-то в так называемом гильбертовом пространстве, где разыгрывается квантовая реальность) и Уровень IV (полностью несвязанные реальности, управляемые разными математическими уравнениями) .

    В своей критике Джордж классифицирует многие аргументы в пользу этих уровней мультивселенной и утверждает, что все они имеют проблемы. Вот мое резюме его основных аргументов против мультивселенной:

    1) Инфляция может быть ошибочной (или не вечной)

    2) Квантовая механика может быть ошибочной (или не унитарной)

    3) Теория струн может быть ошибочной (или не иметь несколько решений)

    4) Мультивселенные могут быть нефальсифицируемыми

    5) Некоторые заявления о мультивселенной сомнительны

    6) Аргументы тонкой настройки могут потребовать слишком многого

    7) Это скользкий путь к еще большим мультивселенным

    (Джордж на самом деле не упомянул (2) в статье, но я добавляю это здесь, потому что я думаю он бы это сделал, если бы редактор разрешил ему больше шести страниц.)

    Каково мое отношение к этой критике? Интересно, что я согласен со всеми этими семью утверждениями — и, тем не менее, я с радостью поставлю свои сбережения на существование мультивселенной!

    Начнем с первых четырех. Инфляция естественным образом порождает мультивселенную уровня I, и если вы добавите теорию струн к ландшафту возможных решений, вы также получите уровень II. Квантовая механика в ее математически простейшей («унитарной») форме дает вам Уровень III. Так что, если эти теории исключаются, то рушится ключевое свидетельство этих мультивселенных.

    Помните: параллельные вселенные — это не теория, а предсказания некоторых теорий.

    Для меня ключевым моментом является то, что если теории научны, то законной наукой является разработка и обсуждение всех их следствий, даже если они связаны с ненаблюдаемыми объектами. Чтобы теорию можно было опровергнуть, нам не обязательно иметь возможность наблюдать и проверять все ее предсказания, достаточно хотя бы одного из них. Таким образом, мой ответ на (4) состоит в том, что с научной точки зрения можно проверить наши математические теории, а не обязательно их следствия, и это вполне нормально. Например, поскольку общая теория относительности Эйнштейна успешно предсказала многие вещи, которые мы можем наблюдать, мы также серьезно относимся к ее предсказаниям для вещей, которые мы не можем наблюдать, например, что происходит внутри черных дыр.

    Точно так же, если нас впечатлили успешные предсказания инфляции или квантовой механики, нам нужно серьезно отнестись и к другим их предсказаниям, включая мультивселенную Уровня I и Уровня III. Джордж даже упоминает возможность того, что однажды вечную инфляцию можно будет исключить — для меня это просто аргумент в пользу того, что вечная инфляция — это научная теория.

    Теория струн, безусловно, не дошла до инфляции и квантовой механики в плане утверждения себя в качестве поддающейся проверке научной теории. Однако я подозреваю, что мы застрянем на мультивселенной уровня II, даже если теория струн окажется отвлекающим маневром. Довольно часто математические уравнения имеют несколько решений, и до тех пор, пока они есть у фундаментальных уравнений, описывающих нашу реальность, вечная инфляция обычно создает огромные области пространства, которые физически реализуют каждое из этих решений. Например, уравнения, управляющие молекулами воды, которые не имеют ничего общего с теорией струн, допускают три решения, соответствующие парам, жидкой воде и льду, и если само пространство может аналогичным образом существовать в разных фазах, инфляция будет стремиться реализовать их все.

    Джордж перечисляет ряд наблюдений, предположительно подтверждающих теории мультивселенной, которые в лучшем случае сомнительны, например, доказательства того, что некоторые константы природы на самом деле не постоянны, свидетельства в космическом микроволновом фоновом излучении столкновений с другими вселенными или странным образом связанным пространством и т. д. Я полностью разделяю его скептицизм в отношении этих утверждений. Однако во всех этих случаях разногласия касались анализа данных, как и в случае фиаско с холодным синтезом. Для меня сам факт, что ученые проводят эти измерения и спорят о деталях данных, является еще одним свидетельством того, что это находится в пределах науки: именно это отличает научную полемику от ненаучной!

    Наша Вселенная удивительно точно приспособлена для жизни в том смысле, что если бы вы изменили многие из наших констант природы лишь на крошечную величину, жизнь, какой мы ее знаем, была бы невозможна. Почему? Если существует мультивселенная уровня II, где эти «константы» принимают все возможные значения, неудивительно, что мы оказываемся в одной из редких обитаемых вселенных, так же как неудивительно, что мы живем на Земле, а не на Меркурии или Нептуне. . Джордж возражает против того факта, что вам нужно принять теорию мультивселенной, чтобы сделать этот вывод, но именно так мы проверяем любую научную теорию: мы предполагаем, что она верна, прорабатываем последствия и отбрасываем теорию, если предсказания не совпадают с наблюдениями. . Некоторые точные настройки кажутся достаточно экстремальными, чтобы смущать — например, нам нужно настроить темную энергию примерно до 123 знаков после запятой, чтобы сделать галактики пригодными для жизни. Для меня необъяснимое совпадение может быть красноречивым признаком пробела в нашем научном понимании. Отвергнуть его, сказав: «Нам просто повезло — хватит искать объяснение!» не только неудовлетворительна, но также равносильна игнорированию потенциально важной подсказки.

    Джордж утверждает, что если мы серьезно относимся к тому, что все, что может произойти, происходит, мы скатываемся по скользкой дорожке к еще более крупным мультивселенным, таким как мультивселенная уровня IV. Поскольку это мой любимый уровень мультивселенной, и я один из очень немногих его сторонников, я с удовольствием скатываюсь по этому склону!

    Джордж также упоминает, что мультивселенные могут противоречить бритве Оккама, вводя ненужные сложности. Как физик-теоретик я сужу об элегантности и простоте теории не по ее онтологии, а по элегантности и простоте ее математических уравнений — и меня весьма поразительно, что математически простейшие теории склонны давать нам мультиверсы. Доказано, что написать теорию, которая порождает именно ту вселенную, которую мы видим, и ничего более, оказалось чрезвычайно сложно.

    Наконец, есть аргумент против мультивселенной, которого я рекомендую Джорджу избегать, но который, на мой взгляд, является наиболее убедительным для большинства людей: параллельные вселенные кажутся слишком странными, чтобы быть правдой.

    Рассмотрев аргументы против мультивселенной, давайте теперь более внимательно проанализируем аргумент в пользу мультивселенной. Я собираюсь доказать, что все спорные вопросы исчезнут, если мы примем Гипотезу Внешней Реальности: существует внешняя физическая реальность, полностью независимая от нас, людей. Предположим, что эта гипотеза верна. Тогда большая часть критики мультивселенной основывается на некоторой комбинации следующих трех сомнительных предположений:

    1) Предположение всевидения: физическая реальность должна быть такой, чтобы хотя бы один наблюдатель в принципе мог наблюдать ее всю.

    2) Допущение педагогической реальности: физическая реальность должна быть такой, чтобы все разумно информированные люди-наблюдатели чувствовали, что они интуитивно ее понимают.

    3) Предположение об отсутствии копирования: никакой физический процесс не может копировать наблюдателей или создавать субъективно неразличимые наблюдатели.

    (1) и (2), по-видимому, мотивированы не более чем человеческим высокомерием. Предположение о всевидении эффективно переопределяет слово «существует», чтобы оно стало синонимом того, что можно наблюдать для нас, людей, сродни страусу, засунувшему голову в песок. Санта-Клаус, местный реализм, Зубная фея и креационизм — но действительно ли они достаточно усердно работали, чтобы освободиться от утешительно знакомых представлений, которые имеют более глубокие корни? мир устроен, а не указывать ему, как работать, основываясь на наших философских предубеждениях.

    Если предположение о всевидении ложно, то существуют ненаблюдаемые вещи, и мы живем в мультивселенной.

    Если предположение о педагогической реальности ложно, то возражение о том, что мультиверсы слишком странны, не имеет логического смысла.

    Если предположение об отсутствии копий ложно, то нет фундаментальной причины, по которой ваши копии не могут существовать где-либо еще во внешней реальности — ведь и вечная инфляция, и единая квантовая механика обеспечивают механизмы для их создания.

    Мы, люди, имеем хорошо задокументированную склонность к высокомерию, высокомерно воображая себя в центре внимания, когда все вращается вокруг нас. Мы постепенно узнали, что вместо этого мы вращаемся вокруг Солнца, которое само вращается вокруг одной галактики среди бесчисленного множества других. Благодаря прорывам в физике мы можем получить еще более глубокое понимание самой природы реальности.

    Цена, которую мы должны заплатить, становится все скромнее — что, вероятно, пойдет нам на пользу, — но взамен мы можем оказаться в реальности более величественной, чем наши предки мечтали в своих самых смелых мечтах.

     

    Дополнительное чтение:

    Множество миров в одном: поиск других вселенных. Алексей Виленкин. Hill and Wang, 2006.

    Космический ландшафт: теория струн и иллюзия разумного замысла . Леонард Сасскинд. Back Bay Books, 2006.

    Скрытая реальность: параллельные вселенные и скрытые законы космоса. Брайан Грин. Knopf, 2011.

    ОБ АВТОРЕ(АХ)

      Недавние статьи Александра Виленкина
      • Космические струны

        Известный как «Безумный Макс» за свои неортодоксальные идеи и страсть к приключениям, Макс Тегмарк занимается научными исследованиями в диапазоне от точной космологии до конечной природы реальности. новая популярная книга «Наша математическая Вселенная». Он профессор физики Массачусетского технологического института, на его счету более 200 технических статей, и он снялся в десятках научных документальных фильмов.

    Оставить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    Вы можете использовать эти HTMLметки и атрибуты:

    <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>