21, Апр, 2025
629880, Ямало-Ненецкий автономный округ, Пуровский район, п. Пуровск, ул. Новая, д. 9

Одз 8 класс алгебра: Как найти Область Допустимых Значений (ОДЗ)

Как найти Область Допустимых Значений (ОДЗ)

Допустимые и недопустимые значения переменных

В 7 классе заканчивается математика и начинается ее-величество-алгебра. Первым делом школьники изучают выражения с переменными.

Мы уже знаем, что математика состоит из выражений — буквенных и числовых. Каждому выражению, в котором есть переменная, соответствует область допустимых значений (ОДЗ). Если игнорировать ОДЗ, то в результате решения можно получить неверный ответ. Получается, чтобы быстро получить верный ответ, нужно всегда учитывать область допустимых значений. 

Чтобы дать верное определение области допустимых значений, разберемся, что  такое допустимые и недопустимые значения переменной. 

Рассмотрим все необходимые определения, связанные с допустимыми и недопустимыми значениями переменной.

Выражение с переменными — это буквенное выражение, в котором буквы обозначают величины, принимающие различные значения.

Значение числового выражения — это число, которое получается после выполнения всех действий в числовом выражении.

Выражение с переменными имеет смысл при данных значениях переменных, если при этих значениях переменных можно вычислить его значение.

Выражение с переменными не имеет смысла при данных значениях переменных, если при этих значениях переменных нельзя вычислить его значение.

Теперь, опираясь на данные определения, мы можем сформулировать, что такое допустимые и недопустимые значения переменной.

Допустимые значения переменных — это значения переменных, при которых выражение имеет смысл.

Если при переменных выражение не имеет смысла, то значения таких переменных называют недопустимыми.  

В выражении может быть больше одной переменной, поэтому допустимых и недопустимых значений может быть больше одного. 

Пример 1

Рассмотрим выражение

В выражении три переменные (a, b, c). 

Запишем значения переменных в виде: a = 0, b = 1, c = 2.

Такие значения переменных являются допустимыми, поскольку при подстановке этих значений в выражение, мы легко можем найти ответ:

Таким же образом можем выяснить, какие значения переменных  — недопустимые. 

a = 1, b = 2, c = 1.

Подставим значения переменных в выражение

На ноль делить нельзя. 

Демоурок по математике

Узнайте, какие темы у вас «хромают», а после — разбирайте их без зубрежки формул и скучных лекций.

Что такое ОДЗ

ОДЗ — это невидимый инструмент при решении любого выражении с переменной. Чаще всего, ОДЗ не отображают графически, но всегда «держат в уме».

Область допустимых значений (ОДЗ) — это множество всех допустимых значений переменных для данного выражения.

Запоминаем!

ОДЗ относится к выражениям. Область определения функции относится к функциям и не относится к выражениям.

Пример 2

Рассмотрим выражение

ОДЗ такого выражения выглядит следующим образом: ( — ∞; 3) ∪ (3; +∞).

Читать запись нужно вот так:
Область допустимых значений переменной x для выражения  — это числовое множество ( — ∞; 3) ∪ (3; +∞).

Пример 3
Рассмотрим выражение

ОДЗ такого выражения будет выглядеть вот так: b ≠ c; a — любое число.

Такая запись означает, что область допустимых значений переменных b, c и a = это все значения переменных, при которых соблюдаются условия b ≠ c; a — любое число.

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).

Как найти ОДЗ: примеры решения

Найти ОДЗ — это значит, что нужно указать все допустимые значения переменных для выражения. Часто, чтобы найти ОДЗ, нужно выполнить преобразование выражения.

Чтобы быстро и верно определять ОДЗ, запомните условия, при которых значение выражения не может быть найдено. 

Мы не можем вычислить значение выражения, если:

  • требуется извлечение квадратного корня из отрицательного числа;
  • присутствует деление на ноль (математическое правило номер раз: никогда не делите на ноль).

Теперь, приступая к поиску ОДЗ, вы можете сверять выражение по всем этим пунктам. 

Давайте потренируемся находить ОДЗ.

Пример 4

Найдем область допустимых значений переменной выражения a3 + 4 * a * b − 6.

Как решаем:

В куб возводится любое число. Ограничений при вычитании и сложении нет. Это значит, что мы можем вычислить значение выражения a3 + 4 * a * b − 6 при любых значениях переменной. 

ОДЗ переменных  a и b — это множество таких пар допустимых значений (a, b), где a — любое число и  b — любое число. 

Ответ: (a и b), где a — любое число и b — любое число.

Пример 5

Найдем область допустимых значений (ОДЗ) переменной выражения 

Здесь нужно обратить внимание на наличие нуля в знаменатели дроби. Одним из условий, при котором вычисление значения выражения невозможно явлется наличие деления на ноль. 

Это значит, что мы может сказать, что ОДЗ переменной a в выражении — пустое множество.

Пустое множество изображается в виде вот такого символа Ø.

Пример 6

Найдем область допустимых значений (ОДЗ) переменных в выражении

Если  есть квадратный корень, то нам нужно следить за тем, чтобы под знаком корня не было отрицательного числа. Это значит, что при подстановке значений a и b должны быть условия, при которых a + 3 * b + 5 ≥ 0.

Ответ: ОДЗ переменных a и b — это множество всех пар, при которых a + 3 * b + 5 ≥ 0.

Лайфхак

Чтобы не потратить зря время на решение нерешаемого примера, всегда обращайтесь к списку условий, при которых выражение не может быть решено.

Запомните

  • Если число входит в ОДЗ, то около числа ставим квадратные скобки.
  • Если число не входит в ОДЗ, то около него ставятся круглые скобки. 

Например, если х > 6, но х < 8, то  записываем интервал [6; 8).

Зачем учитывать ОДЗ при преобразовании выражения

Иногда выражение просто невозможно решить, если не выполнить ряд тождественных преобразований. К ним относятся: перестановки, раскрытие скобок, группировка, вынесение общего множителя за скобки, приведение подобных слагаемых.

Кроме того, что видов таких преобразований довольно много: нужно понимать, в каких случаях какое преобразование возможно. В этом может помочь определение ОДЗ.

Тождественное преобразование может:

  • расширить ОДЗ
  • никак не повлиять на ОДЗ
  • сузить ОДЗ

Рассмотрим каждый случай в отдельности.

Пример 7

Рассмотрим выражение a + 4/a — 4/a

Поскольку мы должны следить за тем, чтобы в выражении не возникало деление на ноль, определяем условие a ≠ 0.

Это условие отвечает множеству (−∞ ; 0) ∪ (0 ; +∞).

В выражении есть подобные слагаемые, если привести подобные слагаемые, то мы получаем выражение вида a. 

ОДЗ для a — это R — множество всех вещественных чисел. 

Преобразование расширило ОДЗ — добавился ноль.  

Пример 8

Рассмотрим выражение a2 + a + 4 * a

ОДЗ a для этого выражения — множество R.

В выражении есть подобные слагаемые, выполним тождественное преобразование. 

После приведения подобных слагаемых выражение приняло вид  a2 + 5 * a 

ОДЗ переменной a для этого выражения — множество R.

Это значит, что тождественное преобразование никак не повлияло на ОДЗ. 

Пример 9

Рассмотрим выражение

ОДЗ a определяется неравенством (a — 1) * (a — 4) ≥ 0.

Решить такое неравенство можно методом интервалов, что дает нам ОДЗ (−∞; 1] ∪ [4 ; +∞).

Затем выполним преобразование исходного выражения по свойству корней: корень произведения = произведению корней.

Приведем выражение к виду

ОДЗ переменной a для этого выражения определяется неравенствами:
a — 1 ≥ 0
a — 4 ≥ 0

Решив систему линейных неравенств, получаем множество [4; + ∞).

Отсюда видно, что тождественные преобразования сузили ОДЗ.
От (−∞; 1] ∪ [4 ; +∞) до [4; + ∞).

Решив преобразовать выражение, внимательно следите за тем, чтобы не допустить сужение ОДЗ.

Запомните, что выполняя преобразование, следует выбирать такие, которые не изменят ОДЗ.

Практика. Решение квадратных и дробно-рациональных уравнений 8 класс онлайн-подготовка на Ростелеком Лицей

Решение биквадратных уравнений

 

Математической моделью практических задач могут быть разные уравнения. В школе мы чаще всего будем сталкиваться с линейными и квадратными уравнениями, которые уже умеем решать. Но иногда могут встречаться и более сложные уравнения. Существуют компьютерные алгоритмы, которые позволяют приближенно найти решение практически любого уравнения, а вот точное решение найти удастся не всегда. На этом уроке мы рассмотрим некоторые приемы, которые позволяют эквивалентными преобразованиями свести более сложные уравнения к тем, которые мы уже умеем решать, – линейным и квадратным.

 

 

Задание 1. Решить уравнение:

Решение.

Воспользуемся свойством степеней  и перепишем уравнение в виде:

Обратим внимание, что неизвестная величина  присутствует в уравнении только в составе «конструкции» . В таком случае применяют метод замены переменной.

Суть его состоит в том, что эту повторяющуюся конструкцию мы заменяем новой переменной:

Заменяя  на , получаем уравнение:

Получили квадратное уравнение. С его решением вы можете ознакомиться ниже.


 

Решение квадратного уравнения с помощью дискриминанта

Имеем следующее квадратное уравнение:

Решим уравнение с помощью дискриминанта. Коэффициенты из общего вида квадратного уравнения:

Тогда:

Найдем корни квадратного уравнения:

Ответ: .


Далее решения линейных и квадратных уравнений не будут разбираться подробно. Внимание будет сконцентрировано на том, как свести более сложное уравнение к линейному или квадратному. Если же у вас возникают проблемы при решении линейных или квадратных уравнений, пересмотрите соответствующие уроки:

  1. «Линейное уравнение с одной переменной (Г.Г. Гаицгори)»;
  2. «Квадратные уравнения».

Решаем уравнение, получаем корни:

Мы нашли значения . Но в исходном уравнении фигурировала переменная , и решить уравнение – значит, найти значения . Вернемся к замене:

Тогда:

Получили два квадратных уравнения. Первое уравнение  имеет два решения:

Второе уравнение не имеет действительных корней.

Ответ: .

В процессе решения нам пришлось дважды решать квадратные уравнения: сначала для переменной , затем для переменной . Поэтому такие уравнения, в которых присутствуют только -я и -я степень неизвестной, а также свободный член, называются биквадратными уравнениями, т. е. «дважды квадратными»:

 

Решение дробно-рациональных уравнений

 

 

Теперь перейдем к решению дробно-рациональных уравнений.

По названию понятно – это те уравнения, которые содержат в себе дробно-рациональные выражения. Если вы забыли, что это за выражения и как с ними работать, рекомендуем пересмотреть соответствующий видеоурок: «Дробно-рациональные выражения».

 

При решении дробно-рациональных уравнений важно:

  1. в самом начале найти ОДЗ выражений, которые встречаются в уравнении;
  2. после нахождения корней нужно проверить, входят ли они в ОДЗ.

Рассмотрим несколько примеров простейших дробно-рациональных уравнений.

 

Задание 2.Решить уравнение:

Решение.

Знаменатель дроби не должен равняться нулю, т. е. ОДЗ:

Поскольку , можем умножить обе части уравнения на , чтобы избавиться от дроби, тогда:

Получили линейное уравнение, решением которого является x = -3. Это решение входит в ОДЗ.

Ответ: -3.

 

Задание 3.Решить уравнение:

Решение.

Выпишем ОДЗ:

Чтобы избавиться от дроби, умножим обе части уравнения на . Мы это можем сделать, поскольку , тогда:

Раскроем скобки, перенесем все слагаемые в одну сторону, приведем подобные слагаемые. Получим квадратное уравнение:

Найдем корни этого уравнения:

Первый корень не входит в ОДЗ. Поэтому  не является решением уравнения.

Ответ: .

 

Решение более сложных рациональных уравнений

 

 

Решим более сложные дробно-рациональные уравнения.

 

Задание 4. Решить уравнение:

Решение.

Выпишем ОДЗ:

Решим каждое из этих неравенств:

Можем объединить эти неравенства в одно:

Перенесем все слагаемые в одну сторону:

Выполним сложение дробей – для этого разложим знаменатели на множители:

Приведем все дроби к общему знаменателю :

Тогда:

Дробь равна , если ее числитель равен :

Раскрыв скобки и приведя подобные слагаемые, получаем квадратное уравнение:

Найдем корни квадратного уравнения:

Корень  не входит в ОДЗ.

Ответ:

Отметим, что для решения дробно-рациональных уравнений можно использовать разные способы. Первый – это умножить обе части уравнения на некоторые выражения так, чтобы избавиться от дробей. Таким способом мы решили первые два примера с дробно-рациональными выражениями. Второй способ – перенести все слагаемые в одну сторону, преобразовать выражение и приравнять числитель полученной дроби к нулю. Так мы решили последний пример. Вы можете выбрать тот способ, который вам удобнее и понятнее. Главное в каждом из них – не забывать про ОДЗ.

 

Задание 5. Решить уравнение:

Решение.

Выпишем ОДЗ:

Решим эти неравенства:

Обратим внимание, что неизвестная  присутствует в уравнении в похожих конструкциях , которые являются взимнообратными выражениями. В таком случае можно применить метод замены переменной:

Тогда:

Исходное уравнение будет иметь вид:

Чтобы избавиться от дроби, умножим обе части уравнения на , при этом , поскольку :

Получили квадратное уравнение, решениями которого являются:

Вернемся к замене:

Решаем первое уравнение:

Решаем второе уравнение:

Полученные корни удовлетворяют ОДЗ.

Ответ:.

 

Задание 6. Решить уравнение:

Решение.

Выпишем ОДЗ:

В подобных уравнениях стандартной является замена:

Чтобы выразить  через , произведем следующие действия:

После замены исходное уравнение будет иметь вид:

Преобразуя это выражение, получаем квадратное уравнение:

Найдем корни уравнения:

Вернемся к замене:

Поскольку , можем умножить обе части каждого из уравнений на  и получить квадратные уравнения:

Первое уравнение имеет решения:

Оба решения удовлетворяют ОДЗ. Второе уравнение не имеет вещественных корней.

Ответ: .

 

Решение иррациональных уравнений

 

 

Теперь перейдем к решению иррациональных уравнений. Так называются уравнения, которые содержат операцию извлечения корня из переменной.

 

 

Задание 7. Решить уравнение:

Решение.

Как мы знаем, выражение  имеет смысл только для значения . Поэтому ОДЗ для данного уравнения будет следующей:

Чтобы привести иррациональное уравнение к линейному или квадратному, нужно избавиться от иррациональности. В данном случае – избавиться от квадратного корня. Для этого воспользуемся свойством корня:

Возведем обе части уравнения в квадрат:

Получили линейное уравнение, корнем которого является:

Полученное значение входит в ОДЗ:

При решении уравнения мы возвели обе части уравнения в квадрат, при этом могли возникнуть посторонние корни, т. е. те, которые не являются решением исходного уравнения.


 

Посторонние корни

Операция возведения в квадрат обеих частей равенства не является равносильным преобразованием. При применении этой операции можно получить из неправильного равенства правильное. Например, равенство  очевидно неправильное. Но при возведении в квадрат получим правильное:

При этом из правильного равенства мы не получим неправильное, ведь если числа равны, то их квадраты также равны.

Поэтому любой корень исходного уравнения является корнем уравнения, полученного после возведения в квадрат обеих частей. Но не все корни полученного уравнения являются корнями исходного. Могут возникнуть посторонние корни. Чтобы исключить их, проще всего выполнить проверку, подставив полученные значения в исходное уравнение.


Выполним проверку. Подставим полученный корень в исходное уравнение:

Мы получили правильное равенство, значит,  является решением уравнения.

Ответ: .

 

Задание 8. Решить уравнение:

Решение.

Подкоренные выражения должны быть неотрицательными. Поэтому ОДЗ будет следующей:

Возведем обе части уравнения в квадрат:

После преобразования получим квадратное уравнение:

Найдем корни уравнения:

Проверим, входят ли корни в ОДЗ.

:

Неравенство неверное, значит, корень  не входит в ОДЗ и не является решением исходного уравнения.

:

Корень входит в ОДЗ.

Теперь выполним проверку, подставив  в исходное уравнение:

Получили правильное равенство, следовательно, исходное уравнение имеет один корень .

Ответ:.

 

Заключение

Итак, сегодня мы познакомились с некоторыми приемами, которые позволяют свести уравнения высших порядков, дробно-рациональные и иррациональные уравнения к квадратным и линейным уравнениям.

 

Список литературы

  1. Никольский С.М., Решетников Н.Н., Потапов М.К., Шевкин А.В. Алгебра, 8 класс. Учебник. – М.: ФГОС, издательство «Просвещение», 2018.
  2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. Алгебра, 8 класс. Учебник. – М.: «Просвещение», 2018.
  3. Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б./Под ред. Теляковского С.А. Алгебра, 8 класс. Учебник. – М.: «Просвещение», 2018.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал yaklass.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Вы можете использовать эти HTMLметки и атрибуты:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>